Structural Analysis Substantiation

To Support

Modification Certification Efforts

James Burd

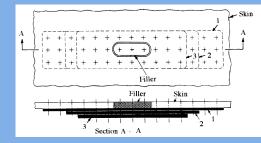
- Structural Analysis Substantiation has been an integral part of Commercial Certification for a long time:
- <u>Air Bulletin 7A (1934)</u> "A stress analysis supplemented by test data if necessary, covering an investigation of all primary structural members for compliance with the requirements outlined in theses regulations".
- <u>CAR 04 (1937)</u> "Structural analyses will be accepted as complete proof of strength only in the case of structural arrangements for which experience has shown such analyses to be reliable".
- <u>CAR 4B.202 (1953)</u> "Proof of compliance by means of structural analysis shall be acceptable only when the structure conforms to types for which experience has shown such methods to be reliable."
- <u>FAR 25.307 (a)(Present)</u> "...Structural analysis may be used only if the structure conforms to that for which experience has shown this method to be reliable."

- Structural Analysis Substantiation has likewise been a requirement for certification of modifications of existing type designs. In addition, guidance by the Airworthiness Authorities has been :
- FAA AC 20-14 Section 5-3 Substantiating/Compliance Data

d. Structural analyses establish mathematically that the appropriate structural strength requirements have been met. These analyses build on the basic loads and material allowable data and may include: static stress, fatigue, fail safe, damage tolerance, etc. The applicant should assure that the <u>analytical methods and assumptions used are applicable</u>, that <u>all pertinent loading conditions have been addressed</u>, and that appropriate margins of safety have been shown for all structural elements.

- Modifications to certified aircraft/rotorcraft are a prominent part of the commercial aviation industry.
- Modifications are made to all certified types and for all types of reasons.
 - Presently Over 70,000 FAA Supplemental Type Certificates
 - STCs for Large Aircraft, Small Aircraft, Rotorcraft
 - STCs for Engines and Propellers
- Due to nature of many STC's, the structural substantiation can be extensive and sometimes difficult for the applicant to determine both the applicable approach and the extent required.
- Choice of substantiation method can have significant impact on schedule, cost and certification of STC.

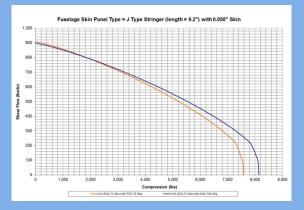
- Some examples of STC's are
 - Increased GW
 - Antennas and Radomes
 - Special Mission
 - Cargo Doors
 - Winglets



- Typical Methods of Substantiation:
 - Equivalent Strength
 - Finite Element Analysis
 - Industry Standard Methods

- Static Strength Substantiation
 - Analysis by Equivalent Strength
 - Pros:
 - Does Not Require External Loads
 - Does Not Require Internal Loads
 - Design is based on Equivalency
 - Usually Based only on Mech Props
 - Equiv. Sect Props & Materials
 - Limited Effort Required

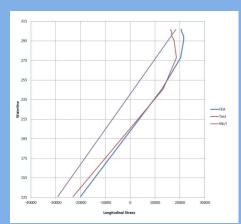
• Cons:


Equivalent Area

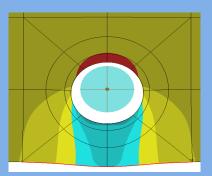

- Cannot account for load redistribution
- Difficult to account for structure reliant on combined allowables
- Difficult to address Non-linearities
- [–] Difficult to check all failure modes
- Results in heavy design

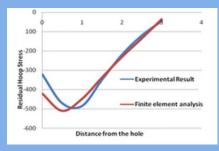
- Certification Limitations
 - Generally limited to Repairs
 - Can be used on modifications without major load redistribution
 - Cannot be used for Cargo Door or Large Cutout Modifications

- Static Strength Substantiation
 - Examples of Items Difficult to Address thru Equivalent Strength:
 - Example 1:
 - Skin & Stringer Panel Replacement
 - Different Stringer Shape
 - Different Skin Material
 - Panel Allowables generally based on post buckled behavior & test data
 - Example 2:
 - Beam Column Type Structure
 - Allowables based on Strain and Modulus
 - Simple Mechanical Properties Comparison is not Valid

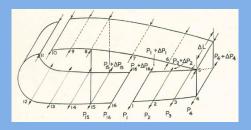

- Static Strength Substantiation
 - Substantiation by Finite Element Analysis
- Pros:
- Provides Detailed Internal Loads
- Can Provide Detail Stresses
- Accounts for Load Redistribution
- Provides Details Part Analysis
- Reduces Conservatism
- ⁻ Interfaces with CAD Design Models
- Can be Readily Modified
- Certification Limitations
 - Results Must be Validated
 - Results Must Correlate within 10% of Test Data
 - Complex Validation for Non-Linearity/Stress Models
- Linge Structure-Complete Aircraft Model

Full Airframe FEM




- Cons:
 - Requires External Aircraft Loads
 - Requires Substantial Dwg Data
 - Requires Validation/Test Data
- ⁻ Difficult to Handle Non-Linearity
- Stress Models Difficult to Correlate
- Must be Within 10% Correlation
- Time Consuming

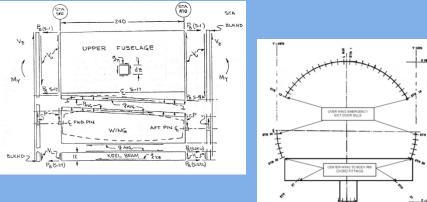
- Static Strength Substantiation
 - Examples of Items Difficult to Address thru FEA:
 - Example 1:
 - Skin & Stringer Panel
 - FEM correlates well with test shear lag behavior
 - FEM does not conservatively predict compression due to panel post buckled properties behavior
 - Example 2:
 - Cold Working of Fastener Hole with Short Edge Distance
 - Amount of Interference, Contact, Non-Linearity all make this a Complex Analysis
 - Test Validation is Non-trivial

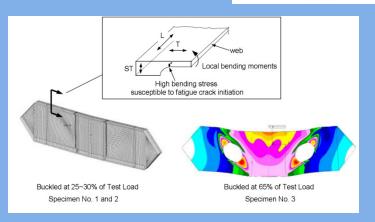


- Static Strength Substantiation
 - Substantiation by Industry Classical Methods

Cozzone Unit Beam

- Pros:
 - ⁻ Large Number of Methods Available
 - Methods are Industry Accepted
 - Methods have been validated by test
 - Methods Support both Linear and Non-Linear Issues
- Certification Limitations
 - Accepted for Most Projects
 - Limited Acceptance for Large Cargo Door Modifications depending on approach


ERONAUTICA

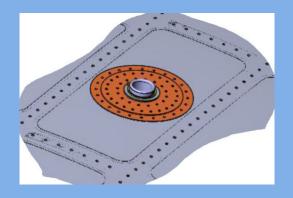

ACD Conference 2019 Atlanta, Georgia

Cons:

- Requires External Aircraft Loads
- Requires Basic Design Data
- Method Produces Conservative Results
- Limited Support for Large Load Redistribution Data
- Methods can be cumbersome if not automated

- Static Strength Substantiation
 - Examples of Items Difficult to Address thru Industry Classical Methods:
 - Example 1:
 - Center Wing / Fuselage Intersection at Side of Body Rib to Skin/Stringer Attach
 - Complex Loading
 - Large Stiffness Effects
 - Overlapping Assumptions are Required
 - Example 2:
 - Cutout in Floor Beam Web
 - Stresses in Post Buckled Web
 - Multiple Gradients
 - Very Few Standard Solutions Available

- Static Strength Substantiation Summary
- Structural Substantiation Must Meet Certification Requirements:
 - Must be Based on Approved Loads and Material Data
 - Must be Proven to Be Reliable
 - Must be Validated (ie Test)
- Applicant Should be Cautious in Selecting Substantiation Approach Based on the following:
 - Certification Requirements
 - Scope of Effort in Terms of Cost
 - Extent of Effort in Terms of Schedule
- Proper Selection of Substantiation Approach can Lead to both a Successful Approach as well as Meeting Project Goals


- Fatigue and Damage Tolerance (FDT) Substantiation
 - Several Types of Modifications can Directly or Indirectly Affect the Fatigue and Damage Tolerance Capabilities of the Basic Airframe
 - Direct Impacts:
 - Modifications that Hide Existing Inspection Areas
 - Modifications Creating New Critical Details
 - Indirect Impacts:
 - Modifications that Affect the External Loads of the Aircraft
 - Modifications to the Mission Usage of the Aircraft
 - Fatigue and Damage Tolerance Substantiations Include Various Methods – Two Examples Compared:
 - Simplified Once per Flight Stress Cycle (Ground-Air-Ground)
 - Flight by Flight Spectra

- FDT Substantiation Direct Impact Examples
 - Radome that covers fuselage skin from visual inspections
 - Antenna penetration thru fuselage skin with external doubler
 - Cabin Interior Equipment that attaches to fuselage frames and floor structure
 - Wing External Pod that attaches to spars and lower wing skin

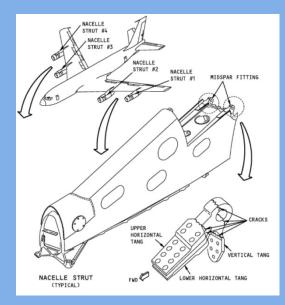
- External Radome
- Covers Fuselage Crown
- Impacts Visual Inspection of Skin
- Alternate ICA Procedures Needed

- Feed-thru Doubler
 - Hole in Fuselage Skin
 - Doubler Covers the Fuselage Skin
 - New Structural Detail Needs Inspection

- Wing Sensor Pod
 - Adds Additional Aero Loads to Wing
 - Attaches to Spars and Wing Skin
 - Creates new Structural Details
 - Requires Multiple Additional Inspections

- FDT Substantiation Indirect Impact Examples
 - Increased Gross Weight Modification
 - Engine and/or Thrust Reverser Modification
 - Change to Mission Profiles and Usage

- TO GW Increase
- Longer time at MTO Thrust
- Increased Exposure to Sonic Loads
- Sonic Fatigue Life of Aft Structure Impacted
- Inspections and/or Life Limits in ICA must be revised



Mission Usage Change

- Increased Pilot Training
- Impact to Number of Landing Cycles
- Change to existing ICA required

ACD Conference 2019 Atlanta, Georgia

Hush Kit Mod

- Weight and CG Changes
- Changes Pylon Attach Loads
- Impact to Blueprint Midspar Fittings
- AMOC required due to existing AD

- FDT Substantiation Various Methods
 - Simplified Once per Flight (GAG) Stress Cycle Example
 - Based on Regulatory Guidance Material
 - Based Solely on Ftu Capability
 - Does Not Distinguish between Hours or Flights
 - Is Not Consistent with Usage Data

$$\sigma_{1G,max} = (F_{tu}/1.5 - \Delta PR/2t)/N_z$$

$$\stackrel{t = thickness = 0.063 inches}{Ftu = tension allowable = 63 ksi}$$

$$Delta P = fuselage pressure = 8.47 psi$$

$$Nz = 2.5g for Limit Maneuver$$

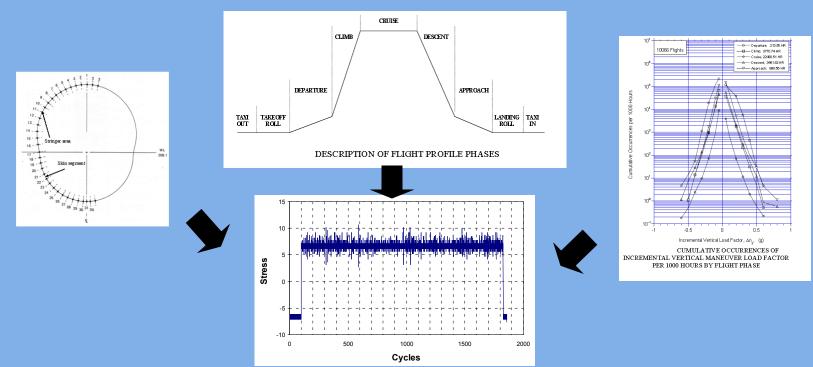
$$R = fuselage radius = 78 inches$$

$$\sigma_{1G,max} = 14703 psi$$

$$\sigma_{max} = \Delta PR/2t + 1.3\sigma_{1G,max}$$

$$\sigma_{max} = 24357 psi$$

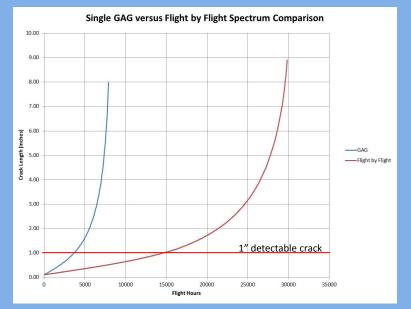
$$\sigma_{max} = -13871 psi$$


$$\sigma_{RES} = \Delta PR/2t + N_z\sigma_{1G,MAX} = 42 ksi$$
ACD Conference 2019
Atlente Coursis

Aliania, Georgia

- FDT Substantiation Various Methods
 - Flight by Flight Spectrum Example

NAUTICA


- Utilizes Specific Aircraft Usage Data
- Uses Aircraft Fatigue External and Internal Loads
- Accounts for Mission Profiles and Usage

ACD Conference 2019

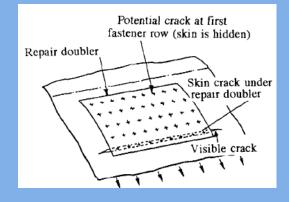
Atlanta, Georgia

FDT Substantiation – Comparison
 – GAG versus Flight by Flight

– Inspection Threshold: GAG = 7800/2 = 3900 hours

Retardation Not Possible

FBF = 29800/2 = 14,900 Hours with Retardation FBF = 39600/2 = 19,800 Hours


Inspection Interval for 1" crack:

GAG = (7800-3700)/2 = 2050 Hours Retardation Not Possible wi

FBF = (29800-14685)/2 = 7550 Hourswith Retardation FBF = (39600 - 19650)/2 = 9980 Hours

ERONAUTICA

- FDT Substantiation Comparison
 - GAG versus Flight by Flight

- ICA Impact:
 - GAG Method: Eddy Current Buried Layer every 2050 Hours
 - FBF Method: Eddy Current Buried Layer every 9980 Hours

- GAG Limitations:
 - Based solely on material capability not aircraft size, configuration or type
 - Can only produce 1 Hour/ 1 Cycle Inspections
 - Does not address changes in usage
 - Unreliable for use in failure analysis in support of SBs and AMOCs
 - Overly conservative for some aircraft, typical for a few but also un-conservative for others
 - Produces costly and sometimes needless inspections

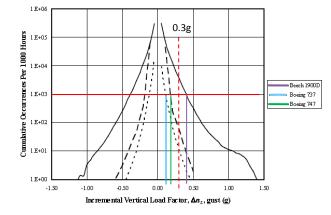
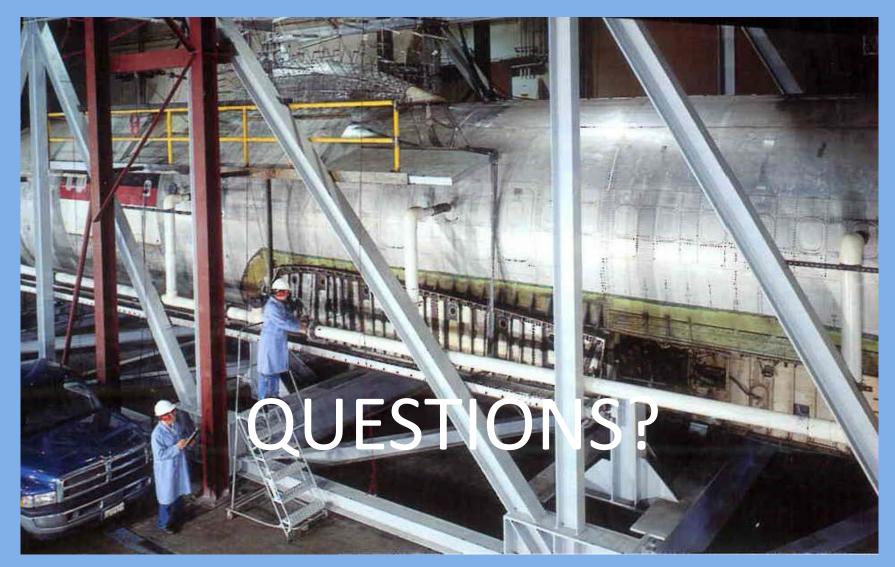


Figure A-122. Comparison of cumulative occurrences of incremental vertical gust load factor per 1000 hours, BE-1900D vs. B-737-400 and B-747-400 for cruise



• SUMMARY

Prior to Initiating an STC Modification Project, it is important to identify the path for structural substantiation which meets both certification and project schedule as well as cost requirements.

- Some Relevant Items to Review in Determining the Substantiation Method
 - Is this a One Time STC or Multiple STC?
 - Is this a Large Complex STC with impact to the basic airframe structural stiffness or load path?
 - Are there impacts or changes to the aircraft mission?
 - Is testing planned as part of the project?
 - Are there existing AD's in the area of the STC which require AMOCs?

